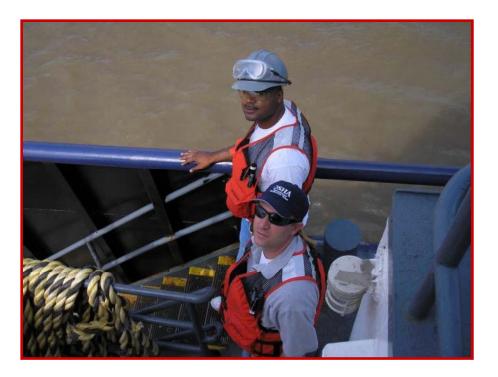
adds value to business, work and life.

OSHA Exposure Assessment Onshore and Offshore in the Deepwater Horizon Oil Spill Response

> Dean Wingo, MS, CIH, CSP Assistant Regional Administrator, USDOL/OSHA Dallas Regional Office

Occupational Safety and Health Administration

OSHA Activities


- Ensure that workers have safety and health training and protection necessary to avoid injuries and illnesses
 - Technical Assistance to UC and Agencies
 - Conduct Interventions
 - Develop and implement exposure assessment and sampling strategy

OSHA Worker Exposure Assessment and Sampling Activities

- Information collected on employers, workers, and work tasks (standard form)
 - Hazards
 - PPE
 - Controls
- Sampling Strategy
 - Three (3) work zones
 - Onshore
 - Near shore
 - Offshore
 - Sixteen (16) specific work tasks

Sampling Tasks

- 1. Manual scraping
- 2. Sump and pump/vacuum
- 3. Manual removal of oil materials
- 4. Low pressure flushing
- 5. Manual sorbent application
- 6. Manual cutting
- 7. In-situ burning
- 8. Vacuum truck, vacuum pumps, portable skimmers

- 9. Oil mop
- 10. Recovery of oil from groundwater
- 11. Marsh-non shore cleanup operations (SCAT)
- 12. Skimming
- 13. High pressure cleaning
- 14. Manual removal of solid tar balls
- 15. On shore support
- 16. Float support

Developing the Sampling Strategy

- Data from previous incidents

 Consultation with SLTC Laboratory
- Data from this incident
 - Crude Oil Vapors
 - Weathered Oil
 - Headspace Analysis of Bulk Samples
 - Air Chemistry (NOAA)

Preliminary Sampling Data Crude Oil Vapors

- SUMMA canister sampling of "fresh" crude oil vapors at spill site
- Samples taken directly above the oil surface and also on vessel surfaces
- Most substances were non-detectable
- Detected substances: 2-400 ppbv
- Concentrations were lower at vessel deck level compared to water surface
- Water soluble compounds go into solution (> 1 mile of seawater)
- Less soluble, smaller MW compounds rapidly volatilize into atmosphere

Preliminary Sampling Data Weathered Oil

- Samples analyzed by two separate laboratories
- Lower MW hydrocarbons were non-detectable (BTEX, etc.)
- Lowest MW hydrocarbon detected was C14
- Naphthalene was detected using more sensitive method at 0.1 mg/kg oil (just above the detection limit)

- Used qualitative mass spectrometry to evaluate volatiles in bulk samples of weathered oil
- At 80°C (176°F) no volatiles were detected in headspace
- Test re-run at 120°C (248°F)
 - C14 to C23 were major components of headspace
 - Minor components included C-6 to C-10 compounds
 - Demonstrated that volatile compounds were not expected to be released from weathered oil

NOAA Air Chemistry Sampling

- OSHA partnership with NOAA to conduct air chemistry sampling
 - P3 aircraft
 - NOAA vessels
 - Air Canisters
- Confirmed OSHA sampling strategy (qualitative basis)

Compounds Monitored

- Chemical Exposure
 Assessments
 - Oil
 - Dispersants
 - Cleaning agents
 - Combustion products
- Physical Hazard Assessments
 - Noise
 - Heat

Sampling Methods

Sample	Method	Media	Comments
VOC-Diffusive (BTEX, etc.)	OSHA 1005	SKC 575-002 Diffusive Sampler	Crude oil
VOC-Active (BTEX, etc.)	OSHA 1005	SKC 226-01 Charcoal Tube	Crude oil
Petroleum Distillates	OSHA 48	SKC 226-01 Charcoal Tube	Crude oil
Heavy Aliphatics & Aromatics	Qualitative GC/MS	SKC 590-100 Ultra I Sampler	Crude oil
Propylene Glycol	OSHA PV2051	SKC 226-57 XAD-7 OVS Tube	Dispersant
2-Butoxyethanol	OSHA 83	SKC 575-002 Diffusive Sampler	Dispersant (prior to 5/2010)

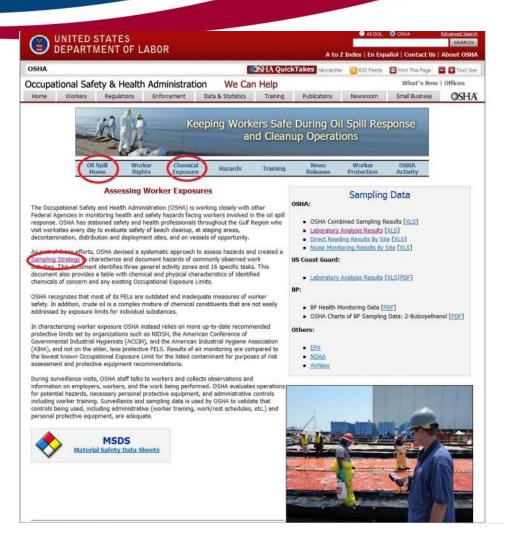
Sampling Methods (continued)

Sample	Method	Media	Comments
Formaldehyde	OSHA 1007	Assay Tech ChemDisk	In-situ burning
Oil Mist	PC2121	PVC Filter	Decon/pressure washing (initial sampling)
Glycol Ethers (2-butoxyethanol)	OSHA 83	SKC 226-01 Charcoal Tube	Decon cleaning agent
Benzene Soluble Fraction	OSHA 58	Glass Fiber Filter	Decon/pressure washing

Direct Reading Methods

- VOC: Photo-ionization detector (PID)
- 4-gas: CO, H2S, %LEL, %O2
- Benzene, Toluene, Xylene, TPH, NH3: CMS/Detector Tubes
- Noise: SLM, Dosimeter
- Heat Stress: WBGT Meter

Coordinated IH Effort


- Tasked to perform 3rd party/verification sampling of spill response operations
 - OSHA Health Response Team
 - Regional and Area Office Staff
- Daily coordination meetings with IH Technical Leads
 - Resources are limited
 - NIOSH, USCG, OSHA, EPA, BP and Contractors
 - Response to complaints or incident reports
 - Excursions
 - Operations
- Did not necessarily use same sampling and analytical methods between Agencies

Where to Find the Data?

- OSHA and USCG Data
- Sample Types
 - Personal
 - Area
 - Direct Reading
 - Integrated
 (Laboratory
 Analysis)
- Compared to lowest OEL

OSHA Sampling Summary

Operation	Air Sample Results
Shore Cleanup	2032
Vessel Booming and Skimming	2490
In Situ Burn	95
Decon	3773
TOTAL	8390

Reporting Limits (RL)

- Reporting limit is the <u>mass</u> of an analyte that the SLTC Lab can quantify.
- Reporting limits (RL_{mass}) are determined by the laboratory.
- Reporting Limits were calculated for air sampling results
- $RL_{air} = RL_{mass} / V_{air}$

- Reporting limits (RL_{mass}) are set by the laboratory.
- Air volume (V_{air}) is determined by field personnel.
 - Sample Time x Sample Flow rate

Shore Cleanup

- Tar ball removal
- Oiled sediments, vegetation, and debris removal
- Manual sorbent application and removal
- Pollution investigation
- Sump & pump/ vacuum trucks

Shore Cleanup Results

- 2032 Sample Results
 - 2027 (99.8%) of the samples were below the reporting limit
 - Samples detected
 - Coal tar pitch volatiles (benzene soluble fraction) (4), Oil mist (mineral) (1)
 - None of the chemical exposures exceeded any occupational exposure limit

Vessel Booming & Skimming

- On-water operations
- Various skimming techniques
- Oil patrols
- Environmental sampling
- Boom application, removal, tending

Vessel Booming & Skimming

Vessel Booming and Skimming Results

- 2490 Sample Results
 - 2469 (99.2%) of the samples were below the reporting limit
 - Samples detected
 - Benzene (1), Xylene (2), Ethyl benzene (1), Toluene (2), Trimethyl benzene (1), Coal tar pitch volatiles (benzene soluble fraction) (2), Oil mist (mineral) (3)
 - Propylene glycol (9)
 - None of the chemical exposures exceeded any occupational exposure limit

In-Situ Burning

- On-water destruction of "fresh" oil
- Upwind end of contaminated area ignited and allowed to burn to down-wind end

In-Situ Burning

- 95 Sample Results
 - 95 (100%) of the samples were below the reporting limit
 - None of the chemical exposures exceeded any occupational exposure limit
 - Elevated CO (peak) concentrations measured on igniter boats equipped with gasoline powered engines

- Vessel decon
- Boom decon
- Equipment decon
- Wildlife decon
- High and low-pressure washing

Decontamination Results

• 3773 Sample Results

- 3600 (95.4%) of the samples were below the reporting limit Samples detected
 - Xylene (6), Ethyl benzene (1), Toluene (4), Petroleum distillates (1) (Coal tar pitch volatiles (benzene soluble fraction) (61), Limonene (49), Oil mist (mineral) (48)
 - Sodium hydroxide (2)
 - Sodium chloride (1)
- <u>One</u> of the chemical exposures exceeded an occupational exposure limit
 - 1177 ppm Toluene exposure to worker conducting boom repair

Personal Protective Equipment

- PPE programs were reviewed and guidance provided
- Respirators not required, with the exception of:
 - Operations at the source (respirators used according to direct reading measurements)
 - In-situ burning (escape respirators available if necessary, rec. by NIOSH)
- PPE used mainly for skin protection
- Necessary to balance PPE requirements with heat stress issues

Lessons Learned

- Improved coordination between laboratory and field personnel
 - Ensure sampling times (i.e. volumes) are adequate to ensure reporting limits are below appropriate OEL
- Use diffusive samplers whenever possible
 - Less manpower needed to collect samples
 - Less disruptive to workers
- Improve coordination between field personnel and data management personnel
 - Quicker feedback of sampling reports to field planners

adds value to business, work and life.